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A load or fastening is moving in a two-dimensional system without separation. The interdependent 

dynamical behaviour of these two elements is investigated. The Hamilton variational principle is used to 

formulate a self-consistent boundary-value problem which correctly incorporates the forces of interaction in 

the moving contact, including those due to the relative motion and wave pressure. The equations of energy 

and momentum transport are derived. It is shown that the interme~a~ through which the vibrations 

energy of the two-dimensional system is converted into the kinetic energy of the one-dimensional object is 

the wave pressure force. As an example, a boundary-vaiue problem is formulated for the motion of a beam 

aiong a Kirchhoff model plate. 

1. CONSIDER a mechanical system consisting of a two-dimensional elastic strip, along which a 
one-dimensional load or fastening is moving without separation (Fig. 1). Throughout this paper a 
“one-dimensional load” will mean a system, possessing elastic and inertial properties, which is 
described satisfactorily by a one-dimensional model such as a string, beam or the like. The nature of 
the vibrations of the two-dimensional system will depend on the law of motion of the load; on the 
other hand, the motion of the latter is affected both by impressed forces and by the reaction forces 
exerted by the two-dimensional system. Our problem is thus to describe the coordinated motion of 
the two systems. 

Let x and y be the spatial variables of the two-dimensional system, t the time, D = {(x, y, t): 
xl~x~x2,yI~y~y2,tl~t~t2}adomaininxytspaceandD0= {(Y,t):yl~yQy2,tl~ttdt;!} the 
projection of D on to the yt plane. We shall assume that the law governing the motion of the 
one-dimensional load is represented by some generalized coordinate t(y, t> and a collection of 
vector-valued functions of the generalized coordinates v(‘y, t) and w Cy, t), both of dimensions IZ, 
such that 
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FIG. 1. 
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/ , 
FIG. 2. 

The surface x = 1 (y , t), (y , t) E DO divides D into parts D1 and O2 (Fig. 2). The law governing the 
motion of the two-dimensional system is represented by another vector-valued function of the 
generalized coordinates: 

u (I, Y, 4 = (u’ (x, y, 0, . . ., un (5, y, t)) 

(2 (5, y, t) E C’ (D), uk (r, y, t) E C” (Di), i = 1, 2, k .:-. 1. . _ ., n) 

Let h(x, Y, 4 u, 4, q, 4, u,,, uxy, II,,,,) be the density of the Lagrangian of the two-dimensional 
system and 

1, (Y, t, I, I,, 4, I,,. “7 “yr “t, vyy, I”, wy, Wt, wyy) 

the density of the Lagrangian of the one-dimensional system; A and L are assumed to be 
continuously differentiable in all arguments. The function h may have the form 

( 

a 
h zz h” 

S<l(Y, t) 

27 X>l(YY t) 

where A1 and A2 are twice continuously differentiable functions in all their arguments. When we say 
that the objects are moving without separation, we mean that the following equalities hold: 

fJk (!I, t) = uk (1 (y. t), y, t) 
wk (A’, t) =- zf,’ (1 (y, t), y, t), (y, t) E Do, k = 1, . . ., n 

A sequence of functions [I(y , r), u (x, y, t), v 0, , t), w (y , t)] that satisfy the above conditions will 
be called strongly consistent. t 

The following theorem is proved by the standard methods of variational calculus, using 
Hamilton’s principle [ 11. 

Theorem. In order for a strongly consistent sequence [I(y,t), u(x,y, t), v(y, t), w(y, t)] to 
determine a stationary value of the functional 

the functions u(x, y, t), l(y, t), v(_Y, t), w(y, t) must satisfy the equations 

tVESNITSKI1 A. I., KAPLAN L. E., KRYSOV S. V. and UTKIN G. A., Self-consistent problems of the dynamics of 

one-dimensional systems with moving loads and fastenings. Preprint No. 159, Gor’kii Scientific Research Institute of 

Radiophysics (1982). 
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Here 

(1.3) 

The added functions on the right side of the equations are the densities of the generalized forces 

qkl 419 d, qwk, which are intrinsically non-conservative. 
The differential equations (1.1) describe the dynamics of the two-dimensional system; Eqs (1.2) 

and (1.3) are the boundary conditions of the consistent motion, with Eqs (1.2) at the same time 
describing the dynamics of the non-dimensional object. 

To complete the formulation of the problem, we must also add conditions at the edges of the 
objects and initial conditions. 

2. The results may be interpreted as follows. It can be shown [ l] that Pk = XMlk is the density of the 
generalized momentum corresponding to the generalized coordinate &(x, y, t) of the two- 
dimensional system, Tk is the vector of the internal conservative force density and 2Lqk is the tensor 
of the momentum density, where 

and hence, for each generalized coordinate &(x, y, f) the law of motion (1.1) becomes 

djnk/dt + div T1, = h,k + (I 

i.e. as usual, it can be interpreted as an equation of generalized momentum transport. 
A special feature of distributed systems is intrinsic transport of energy and wave momentum f3]_ 

To derive the transport equation, we take the scalar praduct of the equations of dynamics of the 
two-dimensional system (1.1) and the partial derivatives of the vector of generalized coordinates u, , 
u, , u,, , and transform the resulting expressions to the following form: 
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ah/at + div S = -At + xqkutk, dp*ldt + div I’* == F, - xq”Vuk 

h = 2 utkpr - A, S = 2 (u,‘T, + (Yz& .Vk)) 

Q* = -xpkh’, F, = Cl. ~z {h,, &,} 

T* = {T,*, T,*} = 
u 

3L-& -&/ 

sir = x (UzkTik + (hzk, ii;);,? “;f:“z = f, y 

(2.1) 

Here h is the density of the Hamiltonian (generalized energy), S is the energy flux density vector, 
Q* is the wave momentum density vector, T* is the wave momentum flux density tensor (the stress 
tensor) and F,, is the vector of the recoil forces density due to the distributed reflection of waves 
propagating in the inhomogeneous elastic system; throughout, summation is from k = 1 to k = n. 

A similar derivation yields the transport equations for the generalized energy and momentum in 
the one-dimensional system. Let plk = L +, p2k = L,,,,k , p. = Llr be the densities of the generalized 
momenta corresponding to the generalized coordinates vk(y, t), +vk(y, t) (k = 1, . . . , n), Z(y, t) of 
the one-dimensional system and TIk = L,* - aL,*/ay, Tzk = LwYk - t3L,,,YYJay, To = LIY - dLlYY13y 
the internal conservative forces in a cross-section y. Then Eqs (1.2) can be rewritten as laws for the 
variation of the generalized momenta: 

dp,k/dt + dT,k/& = L”k + Qvk -. it”‘,, Tk) - (c (nl. &k), n,) - l,pk] 

&&dt -1 i?T,k/dy == L,$ + Qwk - [n,ll/J@lTI 

dpoldt -/- dT,/dy = L, i- qI - l(n,, T,*) - ItpI* i- (‘? {zuxk (n,, iif.&), 

n&l, ni - (1, --IV), n, = (I:) 

where nl and nz are vectors in the x, y plane collinear with the normal and tangent vectors to the 
intersection of the surface x = r(y, t) and a plane t = const. 

To obtain the laws governing energy and wave momentum transport in the one-dimensional 
system, we multiply Eqs (1.2) by the appropriate first partial derivatives of the generalized 
coordinates v(y, t), W(JJ, t), l(y, t); the resulting equations can be reduced to the form 

dh,iat t- asday =- -Lo +- ztq, + Z (hkqvk i- rtv,kq,k) - I(n,, S) - 

- bh - F {ZILfk (n,, w,,)}, n,}l 

ajpfat +-- aT,,*!ay h - (&l 4 z (u:vkqt.k + wvkqk,)) - I@,, ‘J’?*) - 
- 4p2* i- (V <I1lLyk (n,, M&j, n,)l 

h,, l#O i- 2 hkplk i-- Wtk&k) - L 

ky” == ItTo --I. &yblly i 3 (u,‘&k $- !otk&k --f Cyfkl,fl, {- [CytkfJ,ok ) 
l/:1 

PO 
* --_; - 

hl - i% @ykPlk + %kp2k) 

To* =: f, - &,T,, !. bL/y,,) - z (‘A,~% + q,kTzh. + L.~~~L~;,, -t w&~;,) 

Here ha is the density of the Hamiltonian, So is the energy flux density, po* is the wave momentum 
density and To* is the wave momentum flux density. 

Besides the local laws of transport, we are also interested in the global laws governing the 
variations of energy and wave momentum. Integrating Eqs (2.1) over the domain D* = {(x, y): 
x1dx~xx2,y1~y~yZ}, we obtain 

-&)dzdy - 
f 

(w S) dl+ 2 [(n,, S) - IthI dy 
Ill 

(2.2) 
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where F is the boundary of D*, n is the vector of the outward normal to the latter and nl = (1, -I,,). 
Thus, for a system with constant parameters (A, = 0), when there are no non-conservative forces 

(qk = 0), the change in total energy N(t) is due to the energy flux S through the boundaries I? and 
x = l(y, t). For example, if the elastic strip is absolutely rigidly fastened (U = 0, duldn = 0) at the 
boundariesy=yr,y=y2,x=xl,x= I(t), Eq (2.2) may be written, using (1.4) in the form 

dH (9 - = - 1’ (t) F,, dt F, = j:F(Z(t)-0. y;t)dy 

111 

where Fg is the wave pressure force on the moving fastening, i.e. the wave pressure force becomes 
the intermediary whereby vibrational energy is converted into energy of translational motion and 
vice versa. 

3. As an example, let us formulate the problem of flexural vibrations u (x, y, t) of a Kirchhoff plate [4] with 

a. = l/z (~12 - D ((uxx + +J2 + 2 (1 - v) (u.rUQ - WQJ) 

D = EW(12 (1 - Y)) 

where a beam is moving along the plate without separation: 

I, = Vn (PO (I@ + lt2 + Jo(plos) - EoJ (UyvOZ + Z,,Z) - GOJO’pVO~ - Is,uO’) 

performing flexural vibrations u’(y) t), L(y, t) and torsional vibrations (p’(y, t). Here D is the cylindrical 
stiffness, E is Young’s modulus, u is Poisson’s ratio, p is the surface density, h is the thickness of the plate, E. 
and Go are Young’s modulus and the shear modulus, po is the density per unit length, Jo and .I are the polar 
moment of inertia and moment of inertia of the cross-section relative to axes perpendicular to the beam axis 
and K. is the coefficient of the elastic bed. The flexural vibrations of the plate are determined by solving Eq. 
(1.1): 

PQ + D (~xxx + 2u,yy + +,r,Vv) = P 

and finding a solution that satisfies the conditions of continuity and smoothness (1.3) at x = IO,, t): 

uo (?/, t) = JJ (I (Y, t) - 0, !I, t) = u (I (Yt r) + 0, Y, t) 

‘PO (Y. t) = % (1 (Y, t) - 0, Y, Q = UX (I (I/. 0 + 0, Y9 t) 

The equations of balance for the flexural torques and transversal forces (1.2) are 

poJo’~t? - GoJo(P~~O = WI + q, 
poU*lo + EoJuy,,yyO + kouO = WI + 411 

Here 

N2 = D (uxr + vuyy - 2 (1 - VI $/“ry + ‘y” (uy$/ + %cxN 
N’ = NC+ + D (-%xz - (2 - v) u,r,y + 1, (vu,zU + 

+ %/rJ + I,, wxx + uyy/) + ‘y2 (WC,, + kyy)) 

The equation of motion of the beam 101, t) is 

Pal,, + EoJ$,,,, = [PI + P1 
p= __h_ u,N’ - u,,Na 

where F is the wave pressure force. 
Several other examples of specific boundary-value problems may be found in [5]. 
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